← 返回首页

Prompt Engineering 速查 2025

10大提示词技巧 + 实战模板,让 AI 输出更精准

📑 快速导航

1️⃣ Zero-Shot 零样本提示

📝 直接提问 入门

不提供任何示例,直接描述任务让 AI 完成。适合简单、明确的任务。

❌ 模糊
帮我写个东西
✅ 清晰
写一段100字的产品介绍文案, 产品:智能保温杯 特点:12小时保温、显示温度 风格:简洁专业

2️⃣ Few-Shot 少样本提示

📚 提供示例 入门

提供1-5个示例,让 AI 学习模式后处理新输入。示例质量比数量更重要。

请将以下句子改写为更正式的商务语气: 示例1: 输入:这个方案不行 输出:该方案可能需要进一步优化 示例2: 输入:你搞错了 输出:这里似乎存在一些误解 现在处理: 输入:这价格太贵了 输出:

3️⃣ Chain-of-Thought 思维链

🔗 逐步推理 中级

让 AI 展示推理过程,而不是直接给出答案。显著提升逻辑和数学任务的准确率。

问题:一家商店有125个苹果,卖掉了68个后, 又进货了45个,现在有多少个苹果? 请一步步思考: 1. 初始数量:125个 2. 卖掉后:125 - 68 = 57个 3. 进货后:57 + 45 = 102个 答案:现在有102个苹果

触发词:

Let's think step by step
让我们一步步思考
请详细解释你的推理过程
中文触发
First... Then... Finally...
分步引导

4️⃣ Role Prompting 角色扮演

🎭 设定身份 入门

为 AI 设定一个专业角色,让它从该角度思考和回答。

你是一位有20年经验的资深前端架构师, 精通React、Vue、性能优化和团队管理。 请以架构师的视角,评审以下代码并给出改进建议: [代码内容] 要求: 1. 指出潜在的性能问题 2. 评估代码可维护性 3. 给出具体的重构方案

5️⃣ ReAct (Reason + Act)

🔄 推理与行动 高级

结合推理(Thought)和行动(Action),模拟人类解决问题的方式。

问题:北京到上海的高铁票价是多少? Thought 1: 我需要查询北京到上海的高铁信息 Action 1: Search[北京到上海高铁票价] Observation 1: 二等座553元,一等座933元... Thought 2: 已获取到票价信息,可以回答 Action 2: Finish[二等座553元,一等座933元]

💡 ReAct 是 AI Agent 的核心提示模式,适合需要多步操作的复杂任务

6️⃣ Step-Back 逐步回退提示

🔙 先抽象再具体 中级

先让 AI 思考相关的通用原则,再解决具体问题。适合复杂的专业问题。

具体问题:如何优化 React 组件的重渲染? Step 1 - 先问通用问题: "React 渲染机制的核心原理是什么?" Step 2 - 基于原理解决具体问题: "基于上述原理,请分析以下组件的性能问题 并给出优化方案..."

7️⃣ Tree-of-Thought 思维树

🌳 多路径探索 高级

同时探索多条推理路径,评估每条路径的可行性,选择最优解。

问题:设计一个用户登录系统 路径A:传统账号密码 ├─ 优点:用户熟悉,实现简单 ├─ 缺点:安全性依赖密码强度 └─ 评分:7/10 路径B:OAuth第三方登录 ├─ 优点:无需管理密码,用户体验好 ├─ 缺点:依赖第三方服务 └─ 评分:8/10 路径C:无密码登录(邮箱/短信) ├─ 优点:安全性高,无密码泄露风险 ├─ 缺点:实现复杂,有成本 └─ 评分:8/10 最优方案:结合B和C,主推OAuth,备选邮箱验证

8️⃣ APE 自动提示优化

🔧 让 AI 优化提示词 中级

让 AI 帮你改进提示词,生成更有效的版本。

我的原始提示词: "帮我写个产品文案" 请你: 1. 分析这个提示词的不足 2. 生成3个改进版本 3. 解释每个版本的改进点 4. 推荐最佳版本

9️⃣ 结构化输出

📋 指定输出格式 入门

明确要求输出格式(JSON、Markdown、表格等),确保结果易于处理。

分析以下用户评论的情感倾向。 评论:这个产品太棒了,发货也快,强烈推荐! 请以JSON格式返回: { "sentiment": "positive/negative/neutral", "confidence": 0-1之间的数值, "keywords": ["关键词数组"], "summary": "一句话总结" }

🔟 实用技巧速查

📐 CRISPE 提示框架
C Capacity - 设定 AI 的能力/角色
R Request - 明确请求的任务
I Input - 提供必要的输入信息
S Style - 指定输出风格
P Personality - 设定语气/性格
E Example - 提供参考示例

✅ 最佳实践

🎯任务目标要具体明确
📊复杂任务分解为子任务
📝提供足够的上下文信息
🔢使用数字限制输出长度
💬用分隔符标记不同部分
🔄迭代优化提示词
  • 避免使用"不要"等否定词(说明要什么,而非不要什么)
  • 避免过于复杂的嵌套指令
  • 避免假设 AI 知道特定上下文
  • 避免一次性提出过多要求

🔗 延伸阅读

最后更新:2025年12月 | 基于 Google、OpenAI、Anthropic 最新研究